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Abstract—Heterogeneous events, which are defined as events
connecting strongly-typed objects, are ubiquitous in the real
world. We propose a HyperEdge-Based Embedding (HEBE) frame-
work for heterogeneous event data, where a hyperedge represents
the interaction among a set of involving objects in an event. The
HEBE framework models the proximity among objects in an event
by predicting a target object given the other participating objects
in the event (hyperedge). Since each hyperedge encapsulates more
information on a given event, HEBE is robust to data sparseness.
In addition, HEBE is scalable when the data size spirals. Extensive
experiments on large-scale real-world datasets demonstrate the
efficacy and robustness of HEBE.

I. INTRODUCTION

Learning embeddings of objects is to represent each object as
a low-dimensional vector. It is an important task in unsupervised
learning and in data preprocessing of supervised learning. The low-
dimensional vectors, as distributed representations of objects, are
beneficial for various downstream applications, such as exploratory
data analysis, link prediction [1], object clustering [2], classification
[3], and recommendation [4]. The objective of embedding techniques
is mainly to preserve certain relationships among objects [5]–[12].

Interactions among individual components or agents, such as
friendships in social sites, hyperlinks on webpages, word co-
occurrences, and citations in bibliographical data, are ubiquitous
in real-world applications. Embedding on single-typed interactions
(e.g., word co-occurrences, friendships) has been studied extensively.
Taking word co-occurrences as an example, given a corpus, there is an
interaction between two words if one word (as target) appears near the
other word (as context) in a snippet, such as a sentence. The proximity
between the two words can be modeled as the conditional probability
of predicting the observed target given the context [6], where the
conditional probability is estimated using a softmax function. This
model has also been generalized to network data, such as [7], [10].

On the other hand, recent years have witnessed an increasing
interest on studying interactions among strongly-typed objects (i.e.,
the participating objects in an event belong to a number of types)
[13]. Bibliographical data is one such example, where a publication
implies a simultaneous interaction among paper, author, venue and
terms: Authors write paper, paper publishes in venue, and paper
contains terms as content. The publication of a paper can be viewed
as an event, which can be abstracted by a hyperedge encapsulating
all the participating objects in the event. In this paper, we propose
an embedding learning framework based on a collection of heteroge-
neous event data. More generally, we consider that the participating
objects of the events are of different types.

Embedding learning with strongly-typed interactions has broad
real-world applications [8], [11]. There are different approaches to
computing embeddings as shown below.

*Equal Contribution. The work was done while Jialu Liu was a graduate
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Example I.1. DBLP (http://dblp.uni-trier.de) is a CS bibliographical
data set, where each publication record corresponds to an event. There
are three types of participating objects: authors (A), terms (T), and
venue (V), with their interactions represented at the schema level
as shown in Fig. 1 (left). To learn object embeddings, we need to
preserve the proximity among all the participating objects (Fig. 1 (top
right)). Previous studies (e.g., [8], [11]) decompose the simultaneous
interaction among all objects into several scattered pairwise inter-
actions (e.g., Author-Paper, Venue-Paper). Object embeddings are
learned by combing embedding learning procedures upon each set
of pairwise interactions, using conventional embedding learning in
single-typed network data. However, such decomposition may miss
some important information. Consider Einstein and Hawking may
publish in the same venue, using similar terms in astrophysics, but
they did not coauthor a paper. Pairwise modeling cannot capture such
subtle differences.

In this paper, we propose a new framework called HyperEdge
Based Embedding (HEBE) that captures each strongly-typed object
interaction as a whole, as illustrated in the top right of Figure 1.
Inspired from classical hypergraph theory [14] on hyperedges, we
define the interaction among a set of objects as a hyperedge. HEBE
models each hyperedge as a whole. Compared with [8], [11], HEBE
preserves more contextual information for embedding learning.

As every coin has two sides, the hyperedge model encapsulates
all the contextual information with respect to each event, it also
imposes challenges on modeling the proximity and optimization.
Since interactions with multiple participating objects are modeled as a
whole, existing methods cannot be straightforwardly applied. Instead,
we propose to model the proximity of each hyperedge based on
prediction, i.e., the probability that a participating object (as target)
would be predicted given all the remaining objects (as context) in the
event. In other words, the higher proximity of objects in an event is,
the more likely we can recover a specific involving object given the
remaining. Vice versa.

Moreover, it is essential for HEBE to be scalable in the big data
era. We leverage recent advancement of asynchronous stochastic
optimization [15] to take advantage of the parameter sparsity in
embedding learning. Furthermore, we devise a new technique to effi-
ciently optimize the conditional probability of prediction. Compared
with existing methods, our method alleviates the negative sampling
hyperparameter [6], [10], [16].

In HEBE, each hyperedge encapsulates more contextual informa-
tion, leading to more informative and efficient updates. Therefore,
HEBE is more robust to data sparseness. We apply HEBE to large-
scale real word datasets to learn object embeddings and measure
the quality of the learned embeddings based on various classification
tasks. Experimental results verify the efficacy of HEBE.

In sum, the study makes the following contributions:
1) It proposes the problem of learning object embeddings for het-

erogeneous event data using hyperedges, especially when each
strongly-typed event is modeled as a whole.

2) A new embedding framework HEBE is established, with a pro-
posed method to model the proximity among participating objects
in each event based on prediction.
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Fig. 1: The interaction schema of DBLP is in the left. A publication event results in the interactions of authors-publication,
venue-publication, and terms-publication at the same. Existing methods (in the bottom right) consider each interaction type
independently. Our method (in the top right) defines the set of interactions resulted from the same event as a hyperedge, and
model each hyperedge as a whole.
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Fig. 2: Event schema of heterogeneous event data, DBLP, with
two event types, business profile (left) and review (right).

3) A new method called Noise Pairwise Ranking is developed to
optimize the conditional probability based on ranking.

4) Extensive numerical experiments are conducted to demonstrate
the effectiveness and robustness of HEBE.

II. PRELIMINARIES

In this section, we define the problem of object embedding learning
in heterogeneous event data and introduce several related concepts
and necessary notations.

A. Heterogeneous Event Data
Definition II.1. Given a set of objects belonging to T types X ={
Xt

}T
t=1, where Xt represents the set of distinct objects of t-th type,

we define an event Qi as a pair represented as 〈Vi, ωi 〉, in which
Vi = ∪

{
V t
i

}T
t=1 with V t

i
⊆ Xt as a set of participating objects in

t-th type and ωi is the weight of event Qi (e.g., the number of
occurrences of this event). Specifically, if T ≥ 2, such event is defined
as a heterogeneous event; otherwise (T = 1), it is defined as a
homogeneous event. A collection of heterogeneous events is defined
as heterogeneous event data.

We slightly abuse the notation and use Xt to represent both the
set of objects of the t-th type and the name of the type as well.
Besides multiple object types, we further allow multiple event types.
Each event type is defined by event schema to visualize relationships
among objects in the corresponding event type. The event schema of
DBLP mentioned in Example I.1 is shown on the left of Figure 1 with
one event type. Yelp data described in the following example contain
two event types. Event identifiers are marked in dashed circles.

Example II.2. Yelp (http://www.yelp.com/) is an online website
for users to review various businesses. Based on schema shown in
Figure 2, there are two types of heterogeneous events. The first event
type (left) is business profile, the participating object types of which
include Terms in Name and Business; The second (right) is the review
event, including User, Business, and Terms. The business objects type
participates in both event types.

B. Learning Object Embeddings
Given heterogeneous event data and the event schemata, embed-

ding algorithms learn to represent each object of different types
using a low-dimensional vector in the same space. The embedding
algorithms are to preserve the semantic similarity among objects such
that objects that are semantically similar will be close in the space,
with the distance measured by cosine similarity, for instance.

Accordingly, to conduct the object embedding in heterogeneous
event data, the event structure must be preserved. Instead of simply
considering each event as a set of scattered pairwise interactions
between the event identifier and individual participating objects (or
between individual participating objects), we define a new structure to
encapsulate all the information in the event. We use a corresponding
hyperedge Hi to model the event Qi by viewing all the participating
objects as a whole, i.e., Hi connecting the set of objects Vi with
edge weight ωi . It is worth noting that the concept of hyperedge
come from the classical analysis on hypergraphs and hyperedges [14],
[17]. We further generalize the concept of hyperedge by considering
the heterogeneous types of the objects.

In order to model the semantic similarity among participating
objects in each event, we propose a method based on prediction.
The insight is that semantically related objects are more likely to
participate in the same event. For instance, in the DBLP data, it
is more frequently to observe publications with author Christos
Faloutsos and terms of “Network” in the venue ICDM. Therefore,
we define proximity based on the prediction of participating object
observation.

Definition II.3. The proximity of an event is defined as the
likelihood of observing a target object given all other participating
objects in the same event.

Based on the definition of proximity preserving the event struc-
tures, we define the task of object embedding as follows.

Definition II.4 (Object Embedding for Heterogeneous Event Data).
Given heterogeneous event data D = {Qi }, and the event schema,
object embedding is to learn a function M that projects each object
to a vector in a d-dimension space Rd that keeps proximity of a
given event, where d � |X|, i.e., M : X → Rd , where X is the set
of all objects.

III. HEBE FRAMEWORK
In this section, we introduce the HEBE framework to learn the

object embeddings. The major difficulty that lies in embedding learn-
ing in heterogeneous event data is the modeling and optimization of
proximity among participating objects in each event. We will provide
the details of estimating the proximity as discussed in Section II, the
optimization procedure of which is be discussed in Section IV.

A. Optimization Objective
As defined in Definition II.3, HEBE is to predict a target object out

of all alternative objects given the other participating objects on the
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same hyperedge as context. Due to the heterogeneity of the objects,
we constrain the alternative objects are of the same type as the target
object. Assuming the target object is u, we use C to denote the context
objects. Without loss of generality, we further assume the target object
is of type X1 and u < C. The conditional probability of predicting
the target object u of type X1 given C is defined as

P(u|C) = exp
(
S (u,C )

)∑
v∈X1 exp

(
S (v,C )

) , (III.1)

where S(·) is a scoring function reflecting the similarity between
target object u and context objects C such as the aggregation of inner
products among every paired elements from the union of u and C.
However, in case of an object type having many more objects than
the other types in a single event, we take the averaged embeddings
of the object set for each type before applying inner product.
Objective. To preserve the proximity among objects, we can naturally
minimize Kullback-Leibler (KL) divergence between P(·|C) and the
empirical distribution P̂(·|C). Suppose the target object type t, we
use Ct to denote the corresponding context, and Pt as the sample
space of Ct . Hence, the objective function can be defined as:

L = −
∑T

t=1
∑
Ct ∈Pt λCt

KL
(
P̂(·|Ct ), P(·|Ct )

)
,

where we use λCt
is the importance of the context Ct

λCt
=

∑N
i=1 ωiI{Ct ∈Vi }/|Pi, t |, (III.2)

where Pi, t is the subset of Pt constrained on Vi which is defined
on event Qi , and I{ · } is a binary indicator function. λCt

can be
intuitively understood as the weighted number of hyperedges that
have Ct as an object subset.

Lemma III.1. Based on the definition of λCt
in (III.2),

L = −
∑N

i=1 ωi
∑T

t=1
1

��Pi, t ��
∑
Ct ∈Pi, t P(u|Ct ). (III.3)

where u = Vi \ Ct is the target object.

Proof. Proof omitted due to space constraint. �

B. Multiple Event Types
We consider the scenario there are multiple event types in the

heterogeneous event data, such as Example II.2. Suppose there are
K heterogeneous event types, the overall objective function (L∗) is
defined as the (weighted) sum of objective function Lk corresponding
to the k-th event type.

IV. OPTIMIZATION
In this section, we first introduce the optimization procedure for

HEBE with only one event type, followed by the case with multiple
event types.

A. Noise Pairwise Ranking
Considering the objective function of HEBE in (III.3), direct opti-

mization of L is intractable since the conditional probability (III.1)
requires the summation over the entire set of objects with type X1.

To address this challenge, noise contrastive estimation (NCE) [16]
and negative sampling (NEG) [6] are proposed. NCE reduces the
problem of estimating the conditional probability into a probabilistic
classification problem to distinguish samples from the empirical
distribution and a noise distribution. While negative sampling also
learns the parameters as a binary classification problem, it particularly
formulates the objective as logistic regression, which is shown to be
effective in embedding learning [6], [7], [10].

As [18], [19] shows, the hyperparameter of negative sampling
value k [6] plays an important role in obtaining the optimal embed-
dings. To get rid of the hyperparameter, we develop a new optimiza-
tion framework from a pairwise ranking perspective, noise pairwise
ranking (NPR). In comparison, NCE and NEG are discriminative
models, while our model is a generative model in optimizing the

conditional probability. Recall that the conditional probability to be
maximized is defined in (III.1). Therefore,

P(u|C) =
(
1 +

∑
v,u

exp
(
S(v,C) − S(u,C)

))−1
, (IV.1)

which follows from (III.1) via dividing the denominator and numer-
ator by exp

(
S(u,C)

)
. Instead of directly optimizing (IV.1) over all

v ∈ X1 \ u, we update (IV.1) with respect to a small set of noise
samples in X1 \u, where an individual sample is denoted as vn . With
σ(·) representing the sigmoid function that σ(x) = 1/(1+ exp(−x)),
we maximize the following probability instead,

P(u > vn |C) = σ
(
− S(vn,C) + S(u,C)

)
, (IV.2)

which can be interpreted as maximizing the probability of observing
the target u over the noise vn , given the context C. Particularly, it
can be easily verified that

P(u|C) >
∏

vn,u P(u > vn |C),

which implies that optimizing P(u > vn |C) can be explained as
optimizing the lower bound of P(u|C).
Remark IV.1. The derived pairwise ranking results in (IV.2) is
similar to the Bayesian Pairwise Ranking (BPR) proposed in [20].
However, BPR is designed for the personalized ranking in a specific
recommender system with the negative samples coming from missing
implicit feedback; while our NPR is derived based on approximation
from the softmax definition of the conditional probability, besides the
negative samples are sampled from noise distribution.

Thus, for all vn ∈ X1 \ u, (III.1) can be approximated by

P(u|C) ∝ Evn∼Pn logP(u > vn |C),

where Pn is the noise distribution. Similar to NCE and NEG, NPR
also has the noise distribution Pn as a free parameter. We set Pn ∝

d3/4
u as proposed in [6], where du is the degree of u, i.e., the number

of hyperedges involving object u.

B. Single Event Type
Based on the NPR optimization framework proposed in Sec-

tion IV-A, we apply it to HEBE, considering single event type. Recall
that the objective of HEBE is defined in (III.3) with the conditional
probability defined in (III.1). By applying the NPR optimization
framework to the conditional probability in (III.1), we have the new
objective function as

L̃ = −
∑N

i=1
∑T

t=1
ωi��Pi, t ��

∑
Ct ∈Pi, t Eun∼Pn (Xt )`(Ct, u, un ).

where `(Ct, u, un ) = logP(u > un |Ct ), un is the sampled noise from
Pn (Xt ) and the latter is the noise distribution of objects of type Xt .
Based on NPR, we have

P(u > un |Ct ) = σ
(
− S(un,Ct ) + S(u,Ct )

)
.

To optimize L̃, we use the asynchronous stochastic gradient
algorithm (ASGD) [15] due to the sparsity of the optimization
problem, which means that most gradient updates only modify a
small portion of the variables. Define Θ = {θv }v∈X as the parameters,
where θv is the embedding for object v, we have the gradient

∂L̃
∂Θ = −

∑N
i=1

∑T
t=1

ωi��Pi, t ��
∑
Ct ∈Pi, t Eun∼Pn (Sj )

∂`(Ct ,u,un )
∂Θ .

In specific,

∂`(Ct , u, un )
∂θui

= σ (S∆)
∂S (u,Ct )
∂θui

;
∂`(Ct , u, un )

∂θun

= −σ (S∆)
∂S (u,Ct )
∂θun

;

∂`(Ct , u, un ))
∂θ̄Ct

= σ (S∆)
∂
(
S (u,Ct ) − S (un,Ct )

)
∂θCt

.

where S∆ = S(u,Ct ) − S(un,Ct ).
Gradient coefficient. Objects in types of smaller size have larger
coefficient due to the averaging of embeddings for each object type



Algorithm 1 HEBE.

1: Initialize: randomly initialize Θ, Γ
2: for t = 1, . . . ,T do
3: αt is obtained via (IV.3)
4: end for
5: for i = 0 to IN − 1 do
6: η ← η0 · (IN − i)/IN
7: β ← η · [αo]o∈O
8: for k ∈ K do
9: Sample a event Qi of event type k

10: Sample an object type t
11: Draw a random object from Pn (Xt ) as negative
12: Update Object Embeddings Θ by Gradient Descent

(GD) with type-wise step size β
13: end for
14: end for
15: Return: Θ

when calculating the scoring function. This inevitably makes some
object types better trained than others as optimization proceeds,
resulting in the learned Θ being trapped at poor local optima. In
order to balance the average step size among different object types,
when applying ASGD to learn the embedding, we propose to adjust
the global step size using a type-wise gradient coefficient. Suppose
the global step size is η, given an object type t, the step size for
each object in Xt is defined as βt = αtη, where αt is the gradient
coefficient,

αt = |Xt | /
T

max
t ′=1

{
|Xt ′ |

}
. (IV.3)

We define β = [βt ]T
t=1 as the vector of step size for each object type.

The updating process for a single iteration of HEBE is summarized
in Line 10-12 in Algorithm 1.

C. Multiple Event Types
The optimization procedures for HEBE introduced in the previous

sections are applicable when there is only one event type, i.e., |K | =
1, where K is the set of event types. Here, we consider the scenario
when |K | > 1. The unified algorithm with multiple event types is
shown in Algorithm 1, with η0 and IN as the initial step size and
the iteration number. When learning embeddings for the objects (and
the event identifiers), we opt to use a similar procedure to that used
in [11], which is to use all event types jointly. Accordingly, we adopt
the strategy that first uniformly samples a event type and then sample
a event instance of that type, as shown in Line 8.

V. EXPERIMENTAL STUDY
In this section, we report experimental results of the proposed

HEBE framework. To evaluate whether the learned embeddings
preserve the proximity between objects in heterogeneous event data,
we evaluate the embeddings based on various classification tasks.
Particularly, via a series of quantitative studies, we aim at answering
the following two questions:
Q1: Does HEBE method learn better object embeddings compared

with existing methods?
Q2: Is HEBE method robust when data become sparse?
A. Datasets and Compared Methods

We introduce two datasets on which we conduct experiments:
DBLP and Yelp. The basic statistics of both datasets are summarized
in Table I. DBLP is a collection of bibliographic information on
major computer science journals and proceedings, from which we
extracted three types of objects and one event type, with the event
schema presented in Figure 1. Each event corresponds to a publica-
tion, and each publication involves authors, venue, and terms used in
the paper.

The Yelp dataset provides business reviews and we extracted two
event types as presented in Figure 2 with review and business profile
as their event identifiers. In event type I, there are three object types
including user, business and term; while for event type II, we have
two object types, business and term used in its name. It is worth
noting that we distinguish the terms in the review and terms in the
business profile. User is removed from the review event type due
to its sparsity that the number of reviews written by each user is
typically small.

TABLE I: Number of objects for DBLP and Yelp.

DBLP Author Term Venue Paper
209,679 165,657 7953 1,938,912

Yelp Business Term (review) Term (name) Review
12,241 130,259 6,709 905,658

In order to demonstrate the efficacy of the two proposed methods,
we use an extensive set of existing methods as baselines. For the
sake of convenience, we define some notations before detailing the
baselines. Recall that X is the set of objects in different types and D
is the set of events. We define the coocurrence matrix M ∈ R |X |×|X |
such that Mi, j denotes the number of events that two objects are both
involved in. Due to the fact that some methods decompose the data
into pairwise interactions, total degrees among different interactions
may vary significantly and compromise the embeddings. Thus we can
first apply degree normalizions to these interaction and then merge
them to get normalized M̃ as described in [21]. The dimensionality
is set to be 300 for all methods. In particular, the following methods
are considered:
1) Singular Value Decomposition (SVD) on M, and singular vectors

are used as object representation.
2) Normalized SVD (NSVD) on M̃.
3) Positive shifted PMI (PPMI). As shown in [22], the word em-

bedding with negative sampling is equivalent to approximate the
PPMI. Hence, we perform SVD on the PPMI matrix of M.

4) Non-negative Matrix Factorization (NMF) on M, and matrix factor
is used as object representation.

5) Normalized NMF (NNMF) on M̃.
6) LINE [10]: a second-order object embedding approach originally

proposed for networked data. We apply LINE to the decomposed
pairwise interactions directly.

7) PTE [11]: an object embedding approach that applies pairwise
modeling in a round-robin fashion within each event.1

B. Evaluation Metric
The goal of our experiments is to quantitatively evaluate how well

our method perform in generating proximity-preserved embeddings.
One way to evaluate the quality of the embeddings is through

the proximity-related object classification task. After obtaining the
embeddings of the objects, we feed these embeddings into classifiers
including linear SVM and logistic regression to perform classification
with five-fold cross validation. Due to the space limit, we only report
the higher accuracy between linear svm and logistic regression under
different settings. Classification relies on ground truth labels to learn
mapping function between embeddings and classes. It may not be
able to exploit information underlying all dimensions. Therefore we
further use a ranking metric called area under the curve (AUC) [23] to
evaluate the quality of embeddings over all dimensions. Specifically,
we use cosine similarity as the similarity measure. The AUC measure
becomes high if embeddings are close for objects sharing the same
label, while distant for objects having different labels.

Regarding the DBLP dataset, we have two types of labels over
authors. The first is on the research groups, with 116 members
from four research group manually labelled. These groups are lead
by Christos Faloutsos, Dan Roth, Jiawei Han, and Michael I. Jordan,
respectively. The other type of labels is on the research area,

1The labels are not provided during the training.



TABLE II: Classification accuracy (%) and AUC on two
datasets, respecting tasks of research group (DBLP), research
area (DBLP) and restaurant categories (Yelp).

Research Group Research Area Restaurant Type
Method Acc. AUC Acc. AUC Acc. AUC

SVD 81.03 0.7137 83.27 0.5720 74.09 0.7147
NSVD 72.41 0.6958 89.75 0.6271 66.45 0.6244
PPMI 70.69 0.7513 90.22 0.7450 82.82 0.6504
NMF 73.28 0.6210 75.69 0.5798 79.64 0.7955

NNMF 72.41 0.7223 88.31 0.7665 72.00 0.7328
LINE 78.45 0.5607 79.48 0.5565 79.82 0.6378
PTE 87.93 0.7235 90.27 0.6646 81.91 0.7195

HEBE 84.48 0.7957 92.18 0.7905 88.00 0.8961

including 4,040 researchers from four research areas including data
mining, database, machine learning, and artificial intelligence.

As for the Yelp dataset, we select eleven restaurant categories in-
cluding Mexican, Chinese, Italian, American (traditional), American
(new), Mediterranean, Thai, French, Japanese, Vietnamese and Indian
as labels. For each category, we randomly select 100 restaurants
that have at least 50 reviews. Restaurants with multiple labels are
excluded.

C. Experimental results
Now we are ready to present the experimental results for the

aforementioned tasks and try to answer the three questions raised
at the beginning of this section.

1) Classification Results: Table II summarizes the experimental
results on classification (Acc.) and ranking (AUC) in DBLP and Yelp.

Considering the results for research group in DBLP, we note that
PTE and HEBE achieve the best performance. PTE is slightly better
than HEBE on accuracy but the latter outperforms the former on
AUC by a large margin. It is interesting to see that the normalization
strategy on M has a big effect on the performance, but the trend is
oppsite between SVD and NMF.

For the task of research area in DBLP, HEBE attains the best
performance on both classification accuracy and AUC score, con-
firming the their effectiveness of capturing the proximity. The results
on research area are better than the ones on research group for all
methods, which means that the research area task is easier than the
former task. We also observe that both NSVD and NNMF beat their
unnormalized versions, implying that the normalization trick works
for some tasks.

With respect to the Yelp dataset, on classifying the restaurant
type, we observe that HEBE is significantly better than the baselines
for both measures. A tentative explanation is that HEBE framework
models the two event types explicitly, the review event and the
business profile event, which better captures the proximity among
objects. For PTE and the rest methods, this intricate structure will be
dropped due to the representation limits of the models.

To summarize, we positively answer Q1 on the effectiveness of
HEBE in learning the object embeddings. Among all the competitors,
PTE works relatively well for all three tasks, showing its idea of
modeling pairwise interactions better than the rest. But compared to
our framework, by modeling the heterogeneous event as a whole, one
can achieve even better performance.

2) Robustness to Sparsity: In general, the sparsity of event data
is defined as the average number of events each object is involved
in. Thus, if we assume the set of objects to be relatively stable, the
sparsity of the heterogenous event data can be altered by sampling
a subset of all events. In this section, we randomly sample different
percentages (1%, 5%, 10%, 20%, 30%, 50%) of the two datasets
and repeat the three tasks mentioned aforehand. Experimental results
are reported in Table III for the DBLP dataset and Table IV for
the Yelp dataset. The density measures are reported in the first two
rows. For DBLP, since the classification is performed on authors, we
define density measure as the number of publications each author
is associated with. For Yelp, because the businesses are of interest,
we define density measure as the number of reviews each restaurant

TABLE III: The AUC results on sampled DBLP data con-
sidering both research group and research area classification.
The sparsity is measured by the average number of publication
each author is involved in (similar below).

Sampling %. 1% 5% 10% 20% 30% 50%
Density 1.264 2.028 2.882 4.595 6.400 10.315

Research Group
SVD 0.5602 0.6169 0.6481 0.6494 0.6720 0.6924

NSVD 0.5504 0.5919 0.6330 0.6345 0.6517 0.6790
PPMI 0.5502 0.5993 0.6557 0.6703 0.6792 0.7192
NMF 0.5583 0.5989 0.5874 0.6009 0.5950 0.6120

NNMF 0.5462 0.6601 0.6806 0.7167 0.7197 0.7294
LINE 0.6004 0.6254 0.5877 0.5619 0.5669 0.5871
PTE 0.6190 0.6727 0.6434 0.6778 0.7034 0.6783

HEBE 0.6034 0.7082 0.7151 0.7515 0.7640 0.7841
Research Area

SVD 0.5162 0.5337 0.5411 0.5516 0.5551 0.5644
NSVD 0.5076 0.5004 0.5021 0.5157 0.5299 0.5600
PPMI 0.5063 0.5092 0.5180 0.5395 0.5669 0.6203
NMF 0.5143 0.5329 0.5391 0.5493 0.5560 0.5637

NNMF 0.5303 0.5773 0.6206 0.6486 0.6807 0.7594
LINE 0.5552 0.5764 0.5716 0.5501 0.5339 0.5822
PTE 0.5291 0.5858 0.5782 0.6015 0.6356 0.6340

HEBE 0.5635 0.6108 0.6798 0.7199 0.7293 0.7817

TABLE IV: AUC results on sampled Yelp data.
Sampling %. 1% 5% 10% 20% 30% 50%

Density 1.963 4.791 8.155 15.09 22.32 37.01
SVD 0.6133 0.6786 0.7001 0.7100 0.7121 0.7134

NSVD 0.6081 0.6236 0.6308 0.6275 0.6280 0.6259
PPMI 0.5561 0.5484 0.5626 0.5824 0.6089 0.6253
NMF 0.6790 0.7381 0.7594 0.7877 0.7907 0.7991

NNMF 0.6710 0.7022 0.7082 0.7213 0.7297 0.7312
LINE 0.5337 0.5367 0.5689 0.6665 0.6789 0.6833
PTE 0.6315 0.6758 0.6993 0.7163 0.7043 0.7266

HEBE 0.7576 0.8316 0.8621 0.8825 0.8845 0.8938

receives. The density measure increases as the sampling percentage
increases, and its incremental rate is slower than the latter due to the
long-tail behavior in the event data. In other words, when more events
are sampled, the size of the object set will also increase, leading to
a slower rate of increment. Considering the fact that classification
needs to learn the mapping function between embeddings and classes
based on some certain assumptions, which may not agree with the
embedding data, we opt to report AUC results, which provides more
comprehensive evaluation of the embeddings across all dimensions.

Across the three tasks in the two datasets, vertically we observe
HEBE achieves the best performance in general among all cases. This
is due to the fact that HEBE models each event as a whole, which
preserve more information. This property is particularly important
when the observed data is sparse. For different percentages, we
observe that PTE is still the most stable method among all baselines
while the performances of the rest fluctuate wildly for different tasks.
When the density measure is close to 1 such as 1% of events being
sampled in the DBLP dataset, the AUC scores are close to random
(0.5). This is because with a density measure of 1.29, the average
number of events an object is involved in is only slightly higher than
1 and the co-occurrence observations are not sufficient to capture
proximity among objects.

Based on the vertical comparison from Table III and Table IV,
with regard to Q2, we conclude that HEBE framework is relatively
more robust to data sparsity.

VI. RELATED WORK

Heterogeneous event data ubiquitously exist in real word and have
been investigated in previous studies. Due to the heterogeneity of the
objects involved in each event, [13], [21] proposed to abstract such
data as heterogeneous information networks. Similar to the viewpoint
of this paper, a network becomes heterogeneous if it contains more



than two node types. Quite many methods were developed towards
various applications including classification [21], clustering [13],
and similarity search [13]. Recall that when the number of object
types in each event is one, the heterogeneous event data reduce to
homogeneous.

In particular for the embedding task, both [11] and [8] utilize the
above abstraction to represent the heterogeneous event data in het-
erogeneous information networks. But instead of modeling proximity
among objects in each event as a whole, [8], [11] decompose the
multi-way interaction in each event into several pairwise interactions
and then do the pairwise modeling separately. The same problem
exists with some previously mentioned methods but for different
tasks [13], [21]. Our model is substantially different since we directly
model each hyperlink as a single component so that the proximity
among objects can be better preserved.

In order to model the heterogeneous event data, we developed a
hyperedge-based framework. Studies of similar flavor of higher-order
data [24] have recently emerged for some tasks, such as recommender
system [20], multi-relational learning [25], prediction [26], and
clustering [27]. In [20], a tensor factorization model is designed
specifically for tag recommendation; while we explore a more general
framework for embedding to model the proximity of each event as
a whole. [27] defines higher-order network structures, such as cycles
and feed-forward loops, and uses tensor to model the heterogenous
event data. In sharp contrast, most of these methods cannot scale
to the datasets used in this paper and meanwhile our framework
is more general in the sense that it allows multiple event types. In
addition, [27] only models the events with one type of object; while
HEBE supports multiple object types in multiple event types.

On the other hand, some dimension reduction methods can be
adapted for event data embedding, such as principal component anal-
ysis [28], singular value decomposition [28], and non-negative matrix
factorization [29]. However, these methods ignores the intrinsic event
types and fails to model the participating objects collectively, and thus
cannot capture the intricate proximity in heterogeneous event data.

VII. CONCLUSION
In this paper, we proposed to learn object embedding in heteroge-

neous event data. In detail, we proposed the HEBE framework, which
models participant objects in each event as a whole, resulting in more
efficient information propagation. Based on the concept of hyperedge:
HEBE models the proximity among the participating objects in
the same hyperedge. Within the HEBE framework, we presented
a parameter-free ranking-based method to efficiently optimize the
conditional probabilities via noise sampling. Extensive quantitative
experiments have been conducted to corroborate the efficacy of
the proposed model in learning the object embeddings, particularly
robustness towards data sparseness.

We identify some future work for the HEBE framework. Firstly,
it is general and could be adapted to many downstream applications,
including recommender system and link prediction. Secondly, HEBE
prefers term entities from short text. Additional work are needed
to apply it to data with longer text. Thirdly, HEBE tends to fail as
other exiting methods when there are noise object types. How to
eliminate noise for meaningful object embedding learning remains
an open problem. Finally, this work focuses on learning embeddings
in an unsupervised manner. Exploring how to incorporate labels and
generate predictive embeddings is a another promising direction.
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